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The angular distribution of scattered light is calculated for a rod consisting of three co-linear sub-units of variable lengths 
and densities of scattering centers. The general expression obtained is applied to the particular case of the muscle protein 
myosin, which had previously been shown to be a linear aggregate of three rod-like sub-units (meromyosins), two of which 
are identical. Within the experimental error the measured distribution is shown to agree with theory only if the two iden­
tical units (L-meromyosin) are arranged consecutively in the intact molecule. 

I. Introduction 
In addition to its utility in determining absolute 

molecular weights and dimensions of dissolved 
macromolcules, the light scattering method can 
also provide information on the shape of the molec­
ular unit. The angular distribution of the scat­
tered light depends markedly on the shape of the 
molecules and this distribution has been calculated 
for several uniformly dense geometrical forms.3-7 

The usual method of obtaining shape information 
therefore consists in comparing the theoretical and 
observed distributions and choosing that model 
which best fits the experimental data. 

The method clearly rests on the assumptions 
that: (a) polydispersity of molecular weight 
and/or shape is absent, or can be accounted for; 
(b) the correct model is one of those that have been 
calculated theoretically; i.e., the actual molecule 
is a rod, random coil, stiff coil, sphere, ellipsoid or 
cylinder of uniform density. 

The effects of polydispersity on the angular scat­
tering envelope have received a great deal of atten­
tion and in many cases, if the distribution of weights 
or sizes can be characterized, the experimental data 
can still be used in a shape determination.4'8-12 

Further, the number and variety of geometrical 
forms for which theoretical envelopes have been 
calculated would seem to blanket the gamut of pos­
sibilities so well that, to the degree of approximation 
inherent in the measurements, almost any shape 
molecule could be accommodated. The possibility 
remains, however, that a given molecule may not 
have a uniform density of scattering centers. In 
that case the observed scattering envelope could 
not be expected to agree with the theoretical curve 
for the uniformly dense geometrical figure of the 
same gross shape. 

The possibility of the failure of assumption (b) 
due to non-uniformity in mass distribution was 
given added weight during the course of a study of 
the molecular configuration of the muscle protein 
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myosin in solution. AU the experimental values 
of molecular parameters agreed well with the rod 
model for this molecule.13 A subsequent analysis 
of the shape of the angular scattering envelope, 
however, showed measurable deviations from the 
theoretical rod-formula at high scattering angles. 
Since ultracentrifugal studies had shown the pres­
ence of only a single molecular species, polydis­
persity could reasonably be ruled out if not defi­
nitely precluded. I t is well known that the myo­
sin molecule can be broken up into rod-like sub-
units of differing molecular weights,14 consequently 
it was of interest of investigate theoretically the 
effect of non-uniform distributions of scattering 
centers on the scattering envelopes of rod-like mole­
cules, and then to see whether the myosin data 
could be fitted in this way. 

We present first the derivation for a rod with a 
particular kind of non-uniformity. The applica­
tion of this calculation to myosin will follow. 

II. Theory 
We choose as a model a rod with three colinear 

sub-units of lengths k, I2 and Z8; numbers of scatter­
ing centers TVi, N2 and TV3; and therefore linear 
densities of scattering centers pi, p2 and p3, respec­
tively (see Fig. 1). The rod thickness is assumed 
to be negligible compared to the wave length of the 
light used in scattering experiments. 
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Fig. 1.—Model for rod with inhomogeneous mass dis­
tribution. Diameter of rod is assumed to be small compared 
to wave length of light. 

The particle scattering factor, P (8), which 
characterizes the angular dependence of the scat­
tered light due to intramolecular interference is 
given by the double sum over all pairs of scattering 
centers, m and nb 

P{e) = I E E 5H^- (1) 

with JV=JVi + 2V2 + TV3, n = 4ie/\' sin(5/2), X' being 
the wave length of light in the solution, and rmn 
the distance between centers m and n. 

(13) A. Holtzer and S. Lowey, T H I S JOURNAL, 78, 5954 (1956). 
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For convenience the sum in (1) may be separated 
into 
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where the first three terms are related to the par­
ticle scattering factors of sub-units 1, 2 and 3 when 
isolated, and the other three represent the contri­
bution due to interference between pairs of scatter­
ing centers located on different sub-units. 

Equation 1 may be re-written as 
V* V* silWmn _ s: F(r) 

SltlM?" 
Ar (3) 

m n iifmn JO ' fir 
with Fir) the number of scattering centers sep­
arated by the distance r. The problem then re­
duces to finding a suitable analytic form for Fir) 
for each of the terms in (2). 

The first term of (2) is obviously equal to N1
2Pi(B) 

where P i (6) is the well known particle scattering 
factor for a rod of length I1. Analogous relations 
exist for the second and third terms of (2). I t re­
mains for us to evaluate the last three terms. 
Terms four and five involve interference between 
pairs located on different, but adjacent sub-units. 
We proceed to evaluate these. 

For the fourth term, simple considerations suf­
fice to show tha t 

( F(r) = 2pip2r 

• F(r) = 2p lP,/2 
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with analogous relations holding for the fifth term. 
Similarly, the correlation between pairs on the 

non-adjacent first and third sub-units lead to the 
relations 

0 < r < h 
h<r <(l, + I3) (5) 

ih + h) <r < (L - I3) 
(L - I3) <r < L 

Substi tution of the relations (4) and (5) into eq. 
3 followed by straight forward integration then 
leads to the lengthy relation 
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where 

Xi = nh/2 
X2 = iilt/2 
X3 = y.h/2 
Xi = nih + h)/2 
x-a = /tL/2 
X6 = nil, + h)/2 

(fi) 

(7) 

and 
y, = W1ZiV; y, = Ni/N; y3 = ^3/N (8) 

Wc note tha t P(0) for this model is the weighted 
sum of six different particle scattering factors for 
rods of lengths related to the lengths of the sub-
units; where the weighting factors depend on the 
linear density and fraction of scattering centers in 
the various units. 

Also, as the scattering angle approaches zero the 
six particle scattering factors in the sum approach 
uni ty; and since it can be seen tha t the sum of their 
coefficients approaches unity, the total P(B) is in­
deed correctly normalized. 

We will now use equation 6 to interpret the ob­
served angular scattering envelope of myosin. 

III. The Myosin P(O) 
From a s tudy of the light scattering and hydro -

dynamic properties of myosin solutions it has been 
shown tha t the molecular unit is rod shaped. In 
particular, if the uniform rod model is accepted 
sedimentation and viscosity studies coupled with 
light scattering results show the molecular weight 
of the molecule to be 530,000, the length 16,50 A. 
and the diameter of the rod 26 A.13 The data 
definitely rule out the random coil model. 

In a series of interesting experiments A. G. Szent-
Gyorgyi has shown tha t if myosin is digested with 
trypsin for twelve minutes, it is broken down into 
two components called meromyosins.15 These 
sediment a t different rates in the ultracentrifuge, 
and area measurements show tha t the faster com­
ponent (heavy, or H-meromyosin) makes up 57%, 
and the slower one (light, or L-meromyosin) 4 3 % 
of the total mass of the myosin. Analysis indicates 
t ha t there is no material unaccounted for, i.e., the 
entire mass of the myosin molecule is the sum of the 
masses of the sub-units produced. From sedi­
mentation and diffusion studies Szent-Gyorgyi 
finds tha t the two different species are each rods 
with molecular weights 232,000 and 96,000 and 
lengths of 435 and 549 A. respectively. The 
weight percentage figures and these molecular 
weights reveal an empirical mole ratio of 2L- to one 
H-meromyosin in the intact myosin. Further, it 
has recently been shown tha t the optical rotation 
of the mero-myosins, properly summed, gives the 
same value as the measured optical rotation of 
myosin. This suggests t ha t the sub-units retain 
the same molecular configuration as in the original 
molecule. 

If this simplest ratio is the correct one, myosin 
should have a molecular weight of 424,000, which 
differs by approximately 2 0 % from the value cited 
above. In view of the cumulative experimental 
errors in comparing three molecular weights this 
difference is probably not significant. Further , if 
the sub-units are arranged end too end the total 
length of the myosin would be 1533 A., also in satis­
factory agreement with the observed value of 1650 
A. A final check involves the diameters; Szent-
Gyorgyi finds 29 A. for the H- and 17 for L-
meromyosin. These compare favorably with our 
value of 26 A. which presumably should be some 
kind of average. 

(15) A. Hol tzer , T i n s J O U R N A I . „ 64, 507 flOWi). 
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Accepting this picture of myosin there are ob­
viously two possible linear arrangements of the 
sub-units: LLH and LHL. Each of these is 
characterized by a non-uniform linear mass distri­
bution. Examination of the experimental recipro­
cal radiation envelope for undigested myosin shows 
a considerable deviation from the theoretical en­
velope of a uniform rod of the same radius of gyra­
tion (see Fig. 2). Two questions are immediately 
posed by this observation. First, can we explain 
the deviation in terms of the effect of non-uniform 
mass distribution on P(B); and, second, can we dis­
tinguish between the two arrangements L L H and 
LHL? 

I t is most convenient to compare radiation en­
velopes when they have the same initial slopes. 
This means tha t the models considered must be ad­
justed to have the same radius of gyration, k. The 
comparison is further complicated by the fact t ha t 
the relationship between total length and radius of 
gyration is by no means the same for uniform and 
non-uniform rods. Some small adjustment of the 
experimental values is therefore essential to facili­
t a te the comparison. For the sake of clarity we 
first outline our procedure for calculating P (6) for 
the non-uniform rods and then show the details. 

Procedure in calculation of P(B) for non-uniform 
rods: (a) Use the experimental values of IJh, 
N2ZNi (and therefore pjpi) to find the center of grav­
ity of the rod. (b) Use results in (a) to obtain the 
constant factor relating ^2 to I l (c) Use same 
Pi/Pi and N2/Ni to calculate the coefficients in 
equation 6. (b) Calculate P(B) from (6) using co­
efficients from (c) and choosing absolute lengths so 
t ha t (k2)1/2 = 475 A., the observed value for myo­
sin. 

We will now use this recipe to calculate P(B) for 
our two possibilities. We assume throughout the 
actual calculations tha t the refractive index in­
crement is the same for all sub-units, so tha t the 
number of scattering centers is simply proportional 
to the mass. Since almost all proteins have values 
of refractive index increment in the range 0.19-0.2 
cc./g., this is not a serious restriction. 

LLH Model.—For this model h = h and N1 = N? 
(Fig. 1). The relevant ratios are 

h/h + h 

NJN1 + N2 

435 
2 X 549 

= 232,000 
2 X 96,000 

0.400 (9) 

= 1.21 

and 

* = ^ = 3.04 
Pl P2 

With these values we find the center of gravity to 
be 0.116 X 2 X 549 A. units to the left of the heavy 
piece. Using this we find the radius of gyration to 
be given by 

k1 = L2 / l l .8 (10) 

Using (9) in (6) we find the following expression 
for P(B) for this model 

P(S) = -0.420Pi(S) + 0.200P2(S) + 1.22P3(S) (11) 

where Pi(B), P2(B), and P3(0) are the particle scat­
tering factors for uniform rods of lengths (h + 
I2), h and (h + I2 + /3) = L, respectively. 

F-1O), 
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Fig. 2.—Reciprocal particle scattering factors: solid 
curve, homogeneous, thin rod; dashed curve, LLH model; 
dotted and dashed curve, LHL model. Experimental points 
are for intact myosin. 

From (10), usingo the radius of gyration, 475 A., 
we find L = 1630 A. For the experimental ratios 
of the sub-unit lengths and this to ta l length we get 
h = 582 A. and k = 466 A. I t is clear t h a t this 
small adjustment works no great hardship on the 
experimental values for the meromyosins. Using 
these last lengths, then, in equation 11 we obtain 
the dashed curve of Fig. 2. 

LHL Model.—In this case we have /1 = k and Nx 

= AT3 (Fig. 1). Therefore 

h/h = =£ = 0.800 
549 

(12) NJNi = 2.42 
P J Pi = 3.04 

and using the obvious center of gravity we find 
k2 = £718.2 (13) 

Using (12) in (6) we obtain 
P(S) = -0.208P1(S) + 0.134P2(S) + 0.674P4(S) + 

0.400P6(S) (14) 
where the successive Pi(O)'s in the right-hand mem­
ber are those for uniform rods of lengths /1, I2, 
(h + h), and L, respectively. 

Using our experimental radius of gyration in 
(13) we obtain a to ta l length of 2030 A. This 
means h = 725 A. and I2 = 580 A. These lat ter 
values are some 3 0 % larger than the measured 
lengths for the meromyosins. The P(B)-1 for this 
model is shown as the dot-and-dash curve in Fig. 2. 

I t is clear from Fig. 2 tha t while in both these 
cases the non-uniform density has accounted for 
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P''(6). 
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sin2 (%}. 
Fig. 3.—Reciprocal particle scattering factors: solid 

curve, homogeneous, thin rod; dashed curve, adjusted LLH 
model; dotted and dashed curve, adjusted LHL model. 
Experimental points are for intact myosin. 

part of the deviation of experiment from theory, the 
difference is still significant. We see further tha t 
the price we pay for reducing this difference in the 
L H L case is to make the lengths of the meromyosins 
too large for comfort. 

I t should be recalled tha t the method used by 
Szent-Gyorgyi to obtain the meromyosin lengths 
involved assuming no hydration of the molecules, 
using the observed fractional coefficient to obtain 
an axial ratio, and then calculating the length as­
suming rods of known density. For molecules as 
small as the meromyosins this procedure is prone 
to errors even aside from those involved in the ar­
bi trary assumptions about hydration. A reason­
able estimate of the error would be of the order of 
± 2 0 % of each length. The error in their molec­
ular weight values is probably more nearly of the 
order of ± 1 0 % . 

By adjusting the lengths and masses of the mero­
myosins within these limits it is possible to obtain 
a theoretical envelope t ha t fits the observed points 
quite well. Consider the following choices for the 
two possible models. 

LLH Model.—Suppose the correct molecular 
weight of L-meromyosin is 84,000 and of H-
meromyosin 259,000. Suppose further tha t the 
lengths are 640 and 387 A. for L- and H-, respec­
tively. Myosin would then have a total mass of 
427,000, and a total length of 1665 A. Since the 
center of gravity can be shown to be 0.2104 X 640 
A. to the left of the heavy piece, we get 

r- = Z.V12.25 (15) 

P"1 (6! 
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Fig. 4.—Reciprocal particle scattering factors: vertical 
lines, experimental points for aggregated sample, molecular 
weight 1.7 X 10s; rectangles, experimental points for 
"monomeric" myosin, molecular weight 530,000. 

from which we see tha t this length gives us the cor­
rect radius of gyration. Using our now familiar 
procedure we find for this case 

P(S) = -0.636Pi(S) + 0.290P2(S) + 1.340P3(S) (16) 

where the Pi(O)'s have the same meaning as in (11) • 
The reciprocal of this particle scattering factor is 

shown as the dashed line in Fig 3. I t is seen tha t 
theory agrees very well with experiment, and, it is 
fair to say, all masses and lengths have been chosen 
within the experimental errors. 

We must now consider the L H L case for these 
same ratios of masses and lengths of H- to L-mero­
myosin. 

LHL Model.—For this configuration, with these 
ratios, we find 

k* = Z-V22.2 (17) 

We see tha t in order to maintain the radius of 
gyration a t 475 A. the total molecular length would 
have to be 2240 A. A proportionate increase in 
the meromyosin lengths gives us 520 and 860 A. 
for H- and L-, respectively. This length for L-
meromysin is over 5 0 % greater than the observed 
length. 

Plunging blindly ahead we obtain for this model 
P(S) = -0.318P1(S) + 0.238P2(S) + 0.818P1(S) + 

0.262P6(S) (18) 

which is plotted as the dot-and-dash curve on Fig. 
3. While this curve fits the myosin experimental 
da ta almost as well as the dashed curve, the price 
we pay in terms of disagreement with the mero-
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myosin length measurements is too great, partic­
ularly since any hydration would make the reported 
lengths too large. 

We may safely conclude that all of the data on 
both the meromyosins and intact myosin can be ex­
plained, within the experimental errors, by the 
sub-unit arrangement LLH and that the molecule 
is probably of this form. 

There is some further, fragmentary evidence sup­
porting this choice of model. Myosin has been 
observed to aggregate in a completely side to side 
fashion.15 If the LHL arrangement were correct, 
side to side aggregation would leave the mass dis­
tribution and, consequently, P(B) unchanged. In 
the LLH case, however, so long as the cross-linking 
groups are not all on the heavier unit, one can have 

dimers of the form < „ , r > as well as < TT JJ \ • The 

side to side aggregation would then tend to homog­
enize the mass distribution and thus to straighten 

Introduction 
A simple model for interactions between non-

bonded atoms or groups of atoms has recently been 
applied to the calculation of symmetrical barriers 
to internal rotation about single bonds.2 The 
model is now extended to the calculation of en­
ergy differences between trans and gauche forms of 
substituted ethanes, and energy differences be­
tween cis and trans disubstituted ethylenes. For 
the substituted ethanes the agreement with experi­
ment is quite good and it is felt that these energy 
differences are now substantially understood. To 
explain the results for the dihaloethylenes some­
thing more than steric and electrostatic effects is 
required. A resonance effect such as that proposed 
by Pitzer and Hollenberg3 seems likely. No dis­
posable parameters are involved in any of the pres­
ent calculations. 

The Model.—The present simplified model esti­
mates the van der Waals repulsions between non-
bonded atoms or groups of atoms in molecules by 
analogy with known repulsions between atoms or 
groups of atoms which are not part of a larger mole­
cule. For example: the interactions between two 
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out P(B)_1. The latter is in fact the case. Scatter­
ing envelopes of aggregated samples always show 
measurably less downward curvature at high 
angles than monomeric myosin. (See Fig. 4). 

It has become increasingly clear in recent years 
that the derivation of shape information from light 
scattering data is a hazardous affair. The increas­
ing number of variables known to affect the scatter­
ing curve appear to make it more and more difficult 
to interpret in terms of any model. It should be 
pointed out, however, that these factors can ac­
tually add immeasurably to the strength of the 
method. If polydispersity has been shown to 
affect the shape of the curve, it must also be kept in 
mind that, coupled with the theory, that same curve 
can now serve to inform us on the nature of the 
polydispersity. The same could be said of the 
effect of inhomogeneous mass distributions, as we 
have tried to show here in a particular case. 
N E W HAVEN, CONN. 

fluorine atoms bonded to different parts of a larger 
molecule are assumed to be the same as the inter­
actions between two isolated neon atoms; the inter­
actions between two non-bonded chlorine atoms the 
same as those between two isolated argon atoms. 
The force laws describing these interactions are 
taken from well-founded quantum mechanical cal­
culations or from experimental results, so that no 
disposable parameters are involved in the proce­
dure. 

The force laws to be used in the present calcula­
tions already have been given,2 with the exception 
of the bromine and the iodine interactions, which 
are taken by analogy with krypton and xenon, re­
spectively. Unfortunately, the potential functions 
for these systems are not as well known experimen­
tally as for the other systems. From a number of 
potential functions proposed for interactions be­
tween krypton atoms,4'6 we have selected the fol­
lowing as a suitable representative 
<e{r) = (4.694 X 104) exp( -2 .76r ) - 3888/V kcal./mole 

(D 
where r is the separation distance in A. This po­
tential function was derived from measurements 
on second virial coefficients at high temperatures,6 

(4) E. A. Mason and W. E. Rice, / . Chem. Phys., 22, 843 (1954). 
(5) E. Whalley and W. G. Schneider, ibid., 23, 1644 (1955). 
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76, 1001 (1954). 
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A Simple Model for Barriers to Internal Rotation. II. Rotational Isomers1 
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The energy differences between rotational isomers in substituted ethanes and between cis-trans isomers in substituted 
ethylenes have been calculated from a model which assumes spherical symmetry for atoms in molecules. Force laws are 
taken by analogy with known forces between similar atoms or groups of atoms which are not a part of a larger molecule, with 
allowances made for any residual electrical charges. Xo disposable parameters are involved in the calculations. Good 
agreement is obtained for the substituted ethanes. For the substituted ethylenes the cis form is always found to be more 
stable than calculated, and the difference is attributed to resonance involving a partial double bond between the substituent 
and the ethylenic carbon. 


